GenoMed4All & ERN-EuroBloodNet

Educational Program on AI in Hematology for an expert audience

Use case: Multiple Myeloma

Overview of results (both from a technical and clinical perspective) +

specific onboarding requirements (e.g. minimal dataset)

Marina Martello, PhD UNIBO Unit

Department of Medical and Surgical Sciences — University of Bologna IRCCS AOUBO Azienda Ospedaliero-Universitaria S. Orsola, Bologna Istituto di Ematologia «L. e A. Seràgnoli»

Use case: Multiple Myeloma

Overview of results (both from a technical and clinical perspective) + specific onboarding requirements (e.g. minimal dataset)

Marina Martello, PhD UNIBO Unit

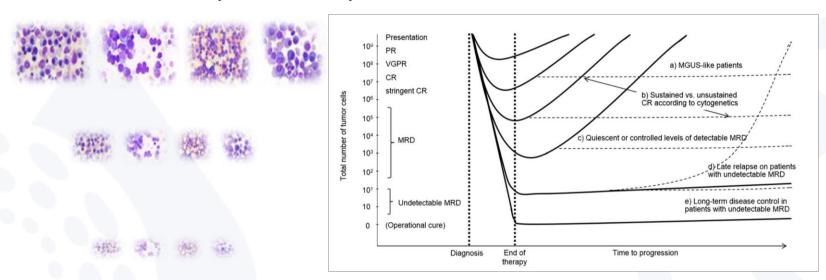
Department of Medical and Surgical Sciences – University of Bologna IRCCS AOUBO Azienda Ospedaliero-Universitaria S. Orsola, Bologna Istituto di Ematologia «L. e A. Seràgnoli»

SUMMARY

- Multiple Myeloma: clinical and biological context
- Current risk definition and the last update: Barcelona criteria
- Examples of AI implementation in Multiple Myeloma
- ☐ GENOMED4ALL: Multiple Myeloma use case and specific aims
- DATASET description: BOLOGNA dataset + CoMMpass dataset
- Overview of results
- FEDERATED LEARNING Universidad Politécnica de Madrid
- DATA MODELLING ML TRAINING ALGORYTHMS FOR RISK PREDICTION University of Turin
- 3. RADIOMICS University of Bologna

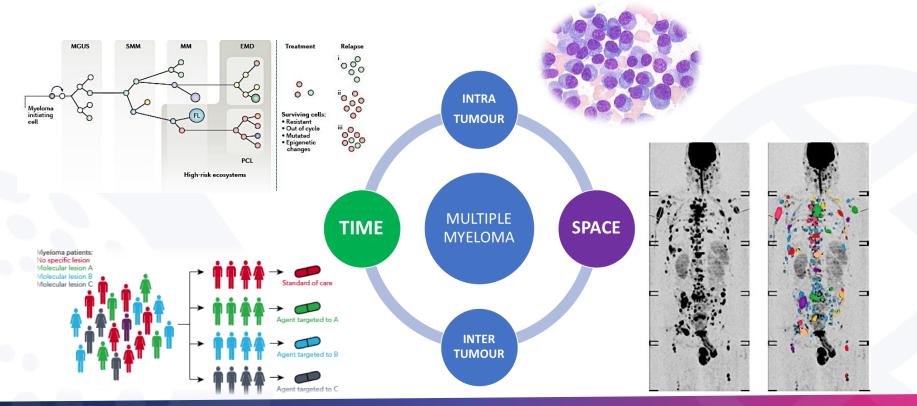
INTRODUCTION Multiple Myeloma(s)

Absence of a unique marker \rightarrow persistence of tumor cells \rightarrow MRD relevance



Need to understand the biology of MM and MRD clones so they can be targeted to achieve a cure considering short and long-term side effects

MM Four layers of heterogeneity



Current Multiple Myeloma risk stratification scores

	ISS	IMWG	R-ISS	
Serum features	β2-microglobulin Albumin	β2-microglobulin Albumin	LDH β2-microglobulin Albumin	
Genomic features	none	del(17p) t(4;14) +1q21	del(17p) t(4;14) t(14;16)	
% HR	33.6% 20%		10%	
Definition of HR	ISS III: β2- microglobulin ≥5.5 mg/L	ISS II/III and t(4;14) or 17p13 del by iFISH	ISS III and either high-risk CA by iFISH or high LDH	
Outcomes based on risk	Median OS Stage I: 62 Stage II: 45 Stage III:29	Median OS Low Risk: >120 Standard risk: 84 High risk: 24	Median OS Stage I: 66 Stage II: 42 Stage III: 37	

R2-ISS	Cytogenetics Prognostic Index		
LDH β2-microglobulin Albumin	none		
del(17p) t(4;14) +1q21	del(17p) t(4;14) del(1p32) 1q21 gain trisomies 3, 5, 21		
8.8%	11-18%		
3-5 points	Prognostic index >1 defined high risk		
Median OS I: nr II: 109.2 III: 68.5 IV: 37.9	5-years OS High-risk: <50% Int risk: 50-75% Low risk: >75%		

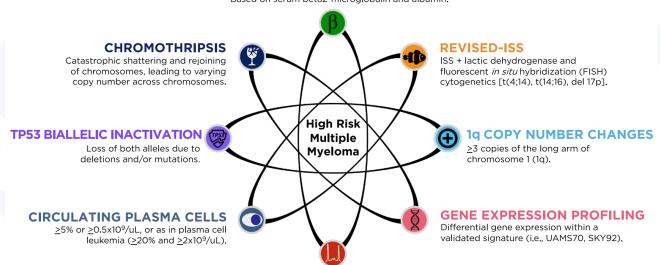
MULTIPLE MYELOMA

Definition of High risk patients

Disease risk is best measured on a spectrum rather than as a dichotomous entity

INTERNATIONAL STAGING SYSTEM (ISS)

Based on serum beta2-microglobulin and albumin.

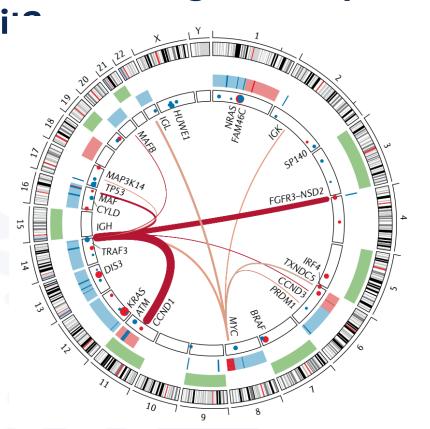


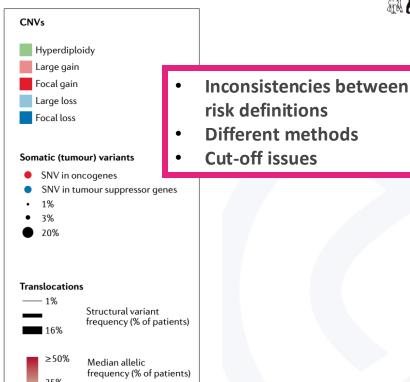
HIGH RISK PHENOTYPE

Extramedullary disease or progression during induction or during short breaks in therapy.

Derman B et al., Blood Reviews 2022

More wide genomic panorama: how to manage





Dutta AK et al., Nat Rev

CO-OCCURRENCE and PATIENTS' SEGMENTATION

CLUSTER1 No IGH translocations Amp1q Del 1p13, 1p32, 13q, TRAF3 and CYLD

KLHL6 CYLD CLUSTER7
No Hyperdiploidy
t(11;14)
Driver mutations

Maura F et al., Nat Comm 2019

IMS consensus on genomic definition of high risk myeloma

Del17p

in more than 20% of plasma cells

TP53 mut

(no threshold VAF)

Del(1p32)del/del

+

Gain/amp 1q or del(1p32)del/wt

Gain/amp 1q + del(1p32)^{del/wt}

Manuscript in preparation

MULTIPLE MYELOMA RISK ASSESSMENT IN 2024 SOME limits → POSSIBLE solutions

1. MYELOMA BIOLOGY IS COMPLEX...and MIGHT CHANGE OVER TIME

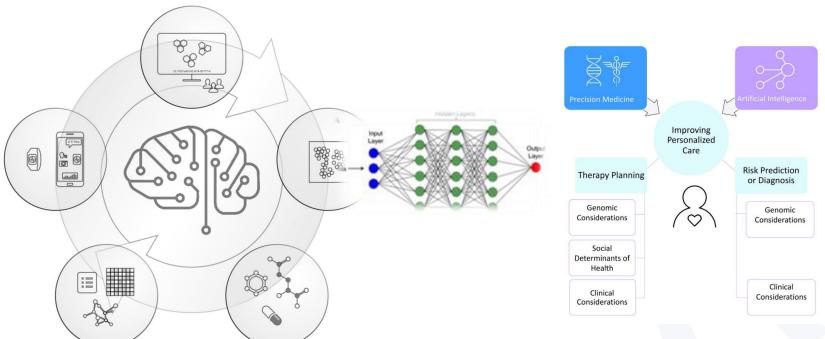
- How to better discriminate patients into different risk categories?
- How to better integrate static with dynamic model of risk assessment?

MULTIFACTORS TIMING TUMOR SIZE

2. MRD is THE BEST MM PROGNOSTICATOR, BUT OUTCOMES ARE HETEROGENEOUS

- How to improve MRD evaluation?
- How to integrate BM with imaging/peripheral blood techniques?

SOLUTION TO IMPROVE MULTIFACTORS INTEGRATION Artificial Intelligence and deep learning systems

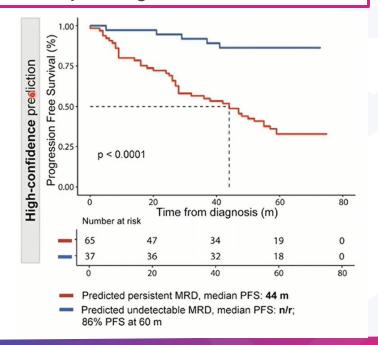


To develop decisional algorithms to be used to improve patients' management

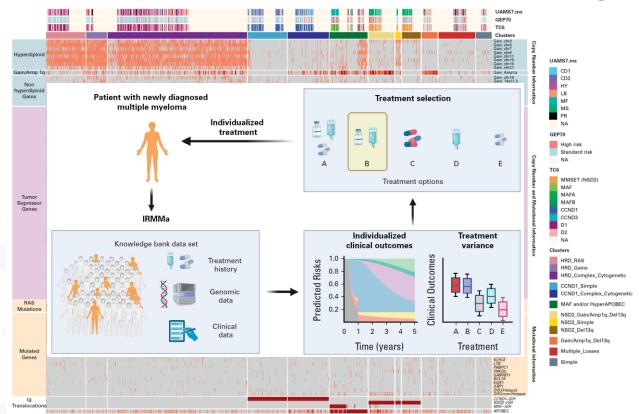
SOLUTIONS TO IMPROVE MULTIFACTORS INTEGRATION Artificial Intelligence and deep learning systems

Tumor and immune biomarkers to predict undetectable MRD A machine learning model developed in transplant-eligible MM

Variable	Sustained N und. MRD (n/N)	Non-sustained und. MRD (n/N)	Increased odds of sustained undetectable MRD	Log odds [Cl]	P
ISS Stage I (vs II and III)	36/90	62/164		0.10 [-0.4; 0.6]	0.73
ISS Stage III (vs I and II)	15/90	41/164	- 	-0.51 [-1.2; 0.1]	0.13
R-ISS Stage I (vs II and III)	26/73	42/142		0.28 [-0.3; 0.9]	0.37
R-ISS Stage III (vs I and II)	5/73	16/142	 	-0.54 [-1.6; 0.5]	0.30
Elevated LDH levels	8/87	28/156	 • 	-0.78 [-1.6; 0.1]	0.07
gain(1q)	28/71	62/139		-0.21 [-0.8; 0.4]	0.48
t(4;14)	9/76	27/150	•	-0.49 [-1.3; 0.3]	0.23
t(14;16)	4/58	7/118 →	•	0.16 [-1.1; 1.4]	0.80
del(17p13)	4/76	21/150		-1.08[-2.2; 0.0]	0.05
del(17p13) and/or t(4;14)	13/90	41/164	• • • • • • • • • • • • • • • • • • •	-0.67 [-1.3; 0.0]	0.05
CTCs (>0.735)	39/90	102/164 ⊢	•	-0.78 [-1.3; -0.2]	0.004
PC clonality (>13.39)	12/90	56/164		-1.20 [-1.9; -0.5]	<0.00
Myeloid precursors (>0.21)	45/90	62/164	.	0.50 [0.0; 1.0]	0.06
NK CD56bright CD27neg cells (>0.04)	32/90	84/164	•	-0.63 [-1.2; -0.1]	0.02
Eosinophils (>1.76)	55/90	74/164		0.65 [0.1; 1.2]	0.02
CD27 _{neg} CD38 _{pos} T cells (>0.61)	12/90	39/164	•	-0.71 [-1.4; 0.0]	0.05
Mature B cells (>1.75)	20/90	35/164		0.05 [-0.6; 0.7]	0.90
Intermediate neutrophils (>36.33)	9/90	15/164		0.10 [-0.8; 1.0]	0.80
Predicted und. MRD	62/90	57/164		1.44 [0.9; 2.0]	<0.00
Predicted und. MRD	25/37	15/84		2.26 [1.4; 3.1]	<0.00



Genomic Classification and Individualized Prognosis in Multiple Myeloma



IRMMa → for estimating individualized risk and treatment variance of NDMM as an online tool for the research community

Aim of the study

■ Research question: can we identify predictors of early relapse (i.e. within 12-18 months from the start of therapy), based on the INTEGRATION of baseline genomic, clinical & imaging data?

Dataset

PI-based triplet therapy 253 NDMM patients

Genomic (79 features: SNP array, ULP-

WGS)

Clinical (60 features: Biochemical, Response,

Survival)

Imaging (PET/CT scans, and annotated data)

CoMMpass Dataset

PI- based triplet therapy 1144 NDMM patients

826 with Genomic (79 features: WGS/WES)

Clinical (29 features: Biochemical, Response,

Survival)

Raw data downloaded from dbGap (dbGaP Study Accession: phsOOO748.v7.p4) and from MMRF partner portal (https://research.themmrf.org)

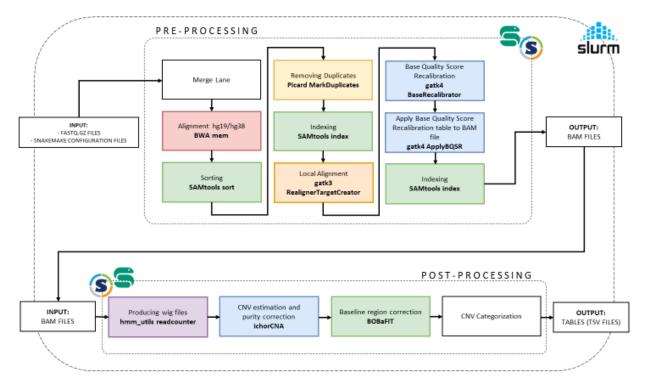
Dataset harmonization

Column name	Description
ld	Patient code
Method	DNA Profilation method. 1 = SNParray, 2 = ULP-WGS
amp	Binary classification output for amplification at arm-level (1/0)
del	Binary classification output for deletion at arm-level (1/0)

Clinical data variables were harmonized to the MM Bologna clinical variables in terms of unit of measure and variable names. Notably, translocations data variables could not be perfectly harmonized due to a difference in the technology used to generate the information (FISH for MM Bologna database and WGS for COMMPASS database). This issue was addressed by utilizing Seq-FISH data provided by the MMRF partner portal, which emulates traditional FISH results using WGS data.

➤ The set of clinical variables provided for CoMMpass dataset is thus identical to the ones included in the MM Bologna clinical dataset

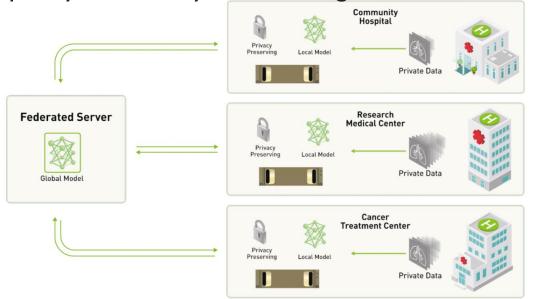
Pipeline for genomic data processing



Ongoing analyses

- 1. FEDERATED LEARNING UPM
- 2. DATA MODELLING and ML TRAINING ALGORYTHMS FOR RISK PREDICTION UNIBO -UNITO
- 3. RADIOMICS UNIBO

DEF: machine learning technique that trains an algorithm via multiple independent sessions, each using its own dataset without sharing data thus addressing critical issues such as data privacy, data security, data access rights and access to heterogeneous data



DATASET DISCUSSION FEATURES SELECTION

SYNTHETIC DATA GENERATION

SYNTHETIC DATA VALIDATION

A DRIVE

AIM: to demonstrate the benefits of implementing federated learning

- Data preprocessing (dataset discussion, features selection)
- Cleaning data
- ☐ To obtain a final .csv with 1388 patients and 12 features for generation

MPC	OLD_0_1	SEX	CREATININE	НВ	HB_m_105	PLT	PLT_m_150	PC_TOT	PC_M_60	IG_ISOTYPE	LIGHT_CHAIN	CALCIUM	Calcio_M_105	PFS_I_EVENT	PFS_I_MONTHS	Early Relapse
MPC_424	0	М	6.66	4.9	1	141	1	100	1	BJ	lambda	8.5	0	1	10	1
MPC_269	0	М	7										0	1	21	0
MPC_538	0	М	0.85	10.8	0	525	0			BJ	kappa	16.1	1	1	0	1
MPC_427	0	F	0.52	11.3	0	294	0	80	1	BJ	lambda	9.2	0	0	26	0
MPC_375	0	М	0.86	13	0	275	0	80	1	BJ	lambda	10.6	1	0	55	0
MPC_483	0	F	0.71	10.7	0	227	0	20	0	IgG	kappa	9.1	0	1	3	1
MPC_429	1	F	0.73	11.7	0	275	0	80	1	IgG	Карра	9.1	0	1	26	0
MPC_430	1	М	0.69	10.5	1	116	1			IgG	kappa	10.9	1	1	26	0
MPC_330	0	F	0.73	8.9	1	299	0	80	1	IgG	kappa	8.8	0	0	43	0
MPC_401	0	М	1	13.2	0	292	0	40	0	IgG	kappa	10.4	0	0	50	0
MPC_519	0	М	1.43	9.1	1	177	0	90	1	ns	Lambda	10	0	1	24	0
MPC_402	1	М	1.53	10.3	1	283	0	70	1	IgG	kappa	9.5	0	0	37	0
MPC_337	0	М	0.72	12.6	0	249	0	20	0	IgG	kappa	9.6	0	0	44	0
MPC_270	1	М	1.34	12	0	233	0			IgG		9.8	0	1	9	1
MPC_403	0	М	1.02	12.3	0	275	0	80	1	IgG	kappa	10.5	1	0	43	0
MPC_474	0	F	0.85	11.3	0	255	0	30	0	IgG	kappa	9.6	0	0	41	0
MPC_1771		М	8	10.6	0	85	0	10	0	BJ	kappa	8.2	0	1	13	0
MPC_480	0	F	0.64	12	0	174	0	10	0	NS	Карра	9.3	0	1	37	0
MPC_488	1	F	1.79	11.4	0	66	1	10	0	IgG	kappa	9.4	0	1	30	0
MPC_857	1	М	0.9	15.2	0	253	0	5	0	IgG	lambda	9.6	0	0	38	0
MPC_409	0	М	0.88	15.2	0	270	0	50	0		lambda	10.7	1	1	21	0
MPC_305	0	М	2.5	8.7	1	94	1	50	0	IgG	Kappa	11	1	1	10	1

Synthetic Data generation

Data have been generated through a Variational AutoEncoder (VAE) based model to train 15 different seeds, since variability on results depends on the initial conditions. The model is also able to generate a missing values mask by learning the real distribution of missing values, useful to create later scenarios with incomplete data

	Avg. accuracy /	Three best seeds accuracies with	Three best seeds average F1-Score
	Avg. F1-score	Confidence Intervals	
Complete data		0.5867 - 0.6261 - 0.6643	0.621
	0.645 / 0.645	0.6073 - 0.6464 - 0.684	0.6503
		0.6234 - 0.6622 - 0.6994	0.6652
Missing values mask		0.4644 - 0.5045 - 0.5445	0.3678
	0.506 / 0.267	0.4667 - 0.5068 - 0.5468	0.0891
musk		4667 - 0.5068 - 0.5468	0.344
Complete data		0.6119 - 0.6509 - 0.6884	0.6437
+ Missing	0.655 / 0.649	0.6165 - 0.6554 - 0.6928	0.6434
values mask		0.6188 - 0.6577 - 0.695	0.6607
Incomplete data		0.6004 - 0.6396 - 0.6774	0.6347
	0.642 / 0.640	0.6027 - 0.6419 - 0.6797	0.6241
		0.605 - 0.6441 - 0.6818	0.6609

Synthetic Data validation

Utility validation with a Survival Analysis (whose metric is the C-Index) and a Classification task predicting the Early Relapse (whose metric is the classification accuracy), taking into account also of the use of complete or incomplete data

Town of	S	URVIVAL ANALYSIS	CLASSIFICATION			
Type of generated data	ed data Avg. C- Three best seeds C-index (real data training -	Avg. accuracy	Three best seeds accuracies (real data training - synthetic data training)			
Complete data	0.607	0.62 - 0.62	0.574	0.61 - 0.57		
		0.62 - 0.61		0.57 - 0.55		
		0.62 - 0.59		0.56 - 0.61		
		0.62 - 0.61		0.58 – 0.55		
Incomplete data	0.615	0.62 - 0.62	0.572	0.61 – 0.58		
		0.62 - 0.61		0.55 – 0.58		

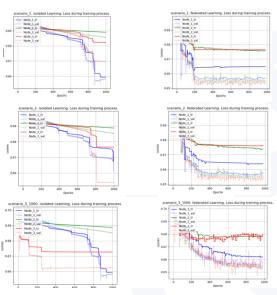
Training with synthetic data gives similar results to training with real data, indicating that the generated data is valid from the utility point of view

Validation protocol scenarios

This protocol will be carried out to see the performance of the model in simulations with different

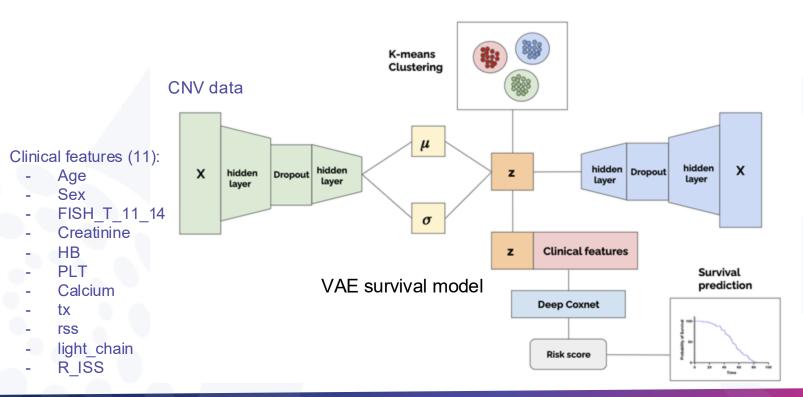
quantities and qualities of data

Scenarios	Nodes	# of samples	F1 score - ISOLATED	F1 score - FEDERATED
Centralized	Node_1	6000	(0.331, 0.3522, 0.3739)	
	Node_1	2000	(0.321, 0.342, 0.3635)	(0.3301, 0.3513, 0.373)
Scenario 1	Node_2	2000	(0.3174, 0.3384, 0.3599)	(0.3235, 0.3446, 0.3662)
	Node_3	2000	(0.3073, 0.3281, 0.3494)	(0.3179, 0.3389, 0.3604)
	Node_1	2000	(0.3336, 0.3548, 0.3765)	(0.3287, 0.3499, 0.3715)
Scenario 2	Node_2	2000	(0.3199, 0.3409, 0.3624)	(0.3208, 0.3418, 0.3633)
	Node_3	2000	(0.3212, 0.3422, 0.3637)	(0.3249, 0.346, 0.3676)
	Node_1	2000	(0.321, 0.342, 0.3635)	(0.3277, 0.3489, 0.3705)
Scenario 3_10	Node_2	2000	(0.3199, 0.3409, 0.3624)	(0.333, 0.3542, 0.3759)
	Node_3	10	(0.2389, 0.2582, 0.2783)	(0.2987, 0.3193, 0.3405)
	Node_1	2000	(0.321, 0.342, 0.3635)	(0.3269, 0.348, 0.3696)
Scenario 3_50	Node_2	2000	(0.3199, 0.3409, 0.3624)	(0.327, 0.3481, 0.3697)
	Node_3	50	(0.2426, 0.262, 0.2821)	(0.3231, 0.3442, 0.3658)
	Node_1	2000	(0.321, 0.342, 0.3635)	(0.3294, 0.3506, 0.3722)
Scenario 3_100	Node_2	2000	(0.3199, 0.3409, 0.3624)	(0.3293, 0.3505, 0.3721)
	Node_3	100	(0.1351, 0.1507, 0.1674)	(0.304, 0.3247, 0.346)
	Node_1	2000	(0.321, 0.342, 0.3635)	(0.3304, 0.3516, 0.3733)
Scenario 3_500	Node_2	2000	(0.3199, 0.3409, 0.3624)	(0.328, 0.3492, 0.3708)
	Node_3	500	(0.3034, 0.3241, 0.3454)	(0.3304, 0.3516, 0.3733)
	Node_1	2000	(0.321, 0.342, 0.3635)	(0.3241, 0.3452, 0.3668)
Scenario 3_1000	Node_2	2000	(0.3199, 0.3409, 0.3624)	(0.3269, 0.348, 0.3696)
	Node_3	1000	(0.307, 0.3278, 0.3491)	(0.3262, 0.3473, 0.3689)



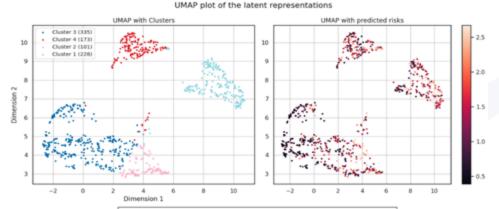
- ☐ FL achieves F1-Score results statistically indistinguishable from the Centralized case
- ☐ FL is specially recommended in settings where some nodes do have few samples (scenario 3)

Data modelling for risk prediction

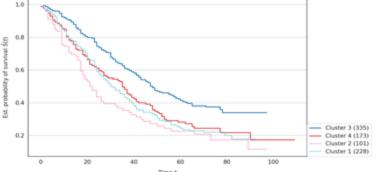


Data modelling for risk prediction

CoMMpass (837 patients)

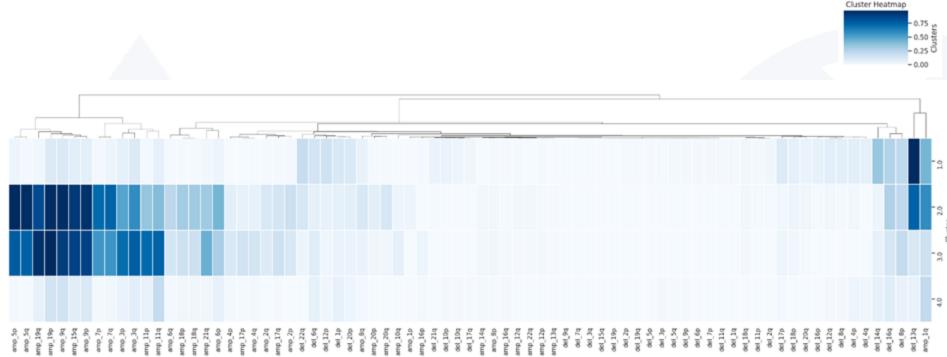


C-Index cross-validation: 0.70±0.02

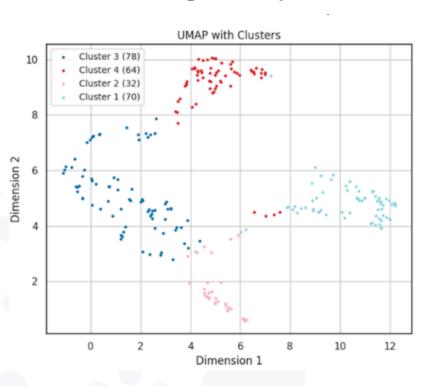


Data modelling for risk prediction

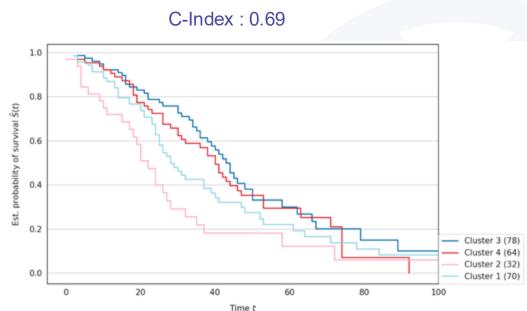
CoMMpass: CNV patterns across different clusters



Data modelling for risk prediction

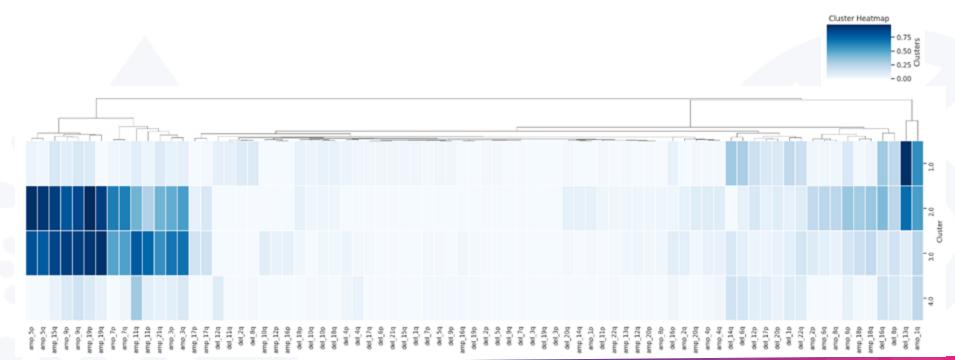


Bologna (253 patients → 244)

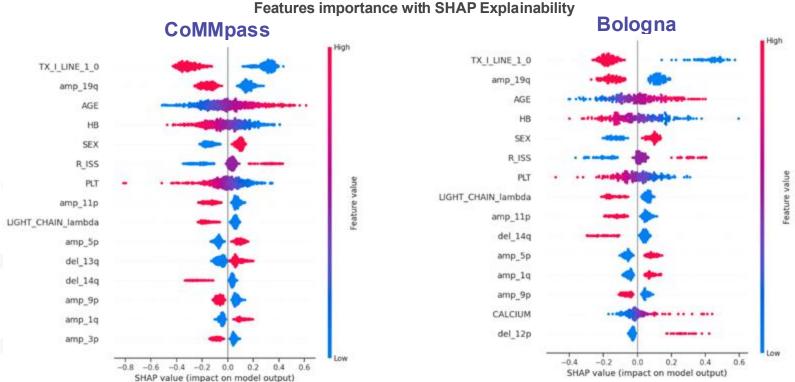


Data modelling for risk prediction

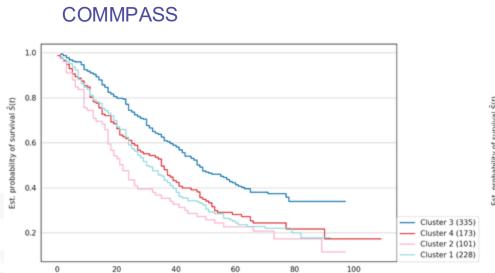
Bologna dataset: CNV patterns across different clusters



Data modelling for risk prediction

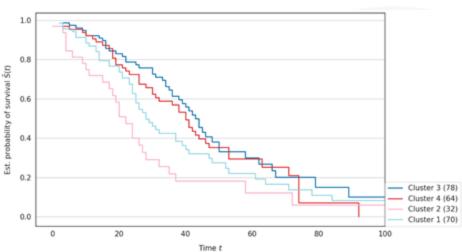


Data modelling for risk prediction

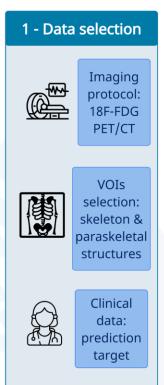


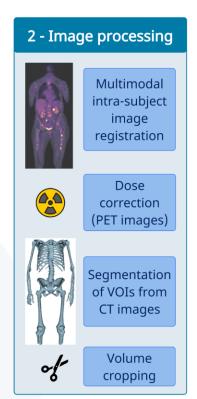
Time t

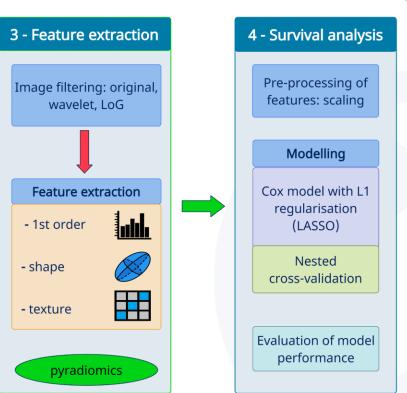
GenoMed



Radiomics







Radiomics: current status

Dataset

- >214 MM patients (Sant'Orsola Hospital, BO)
- Clinical endpoints: Progression-Free Survival (PFS), Overall Survival (OS)

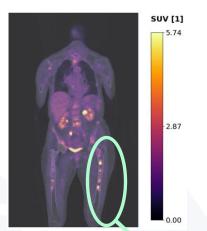
Image processing

- Intra-patient image registration
- Dose correction on PET images → SUV
- Volume cropping (no brain, homogeneous FOV)
- Segmentation of Volumes of Interest (VOI)

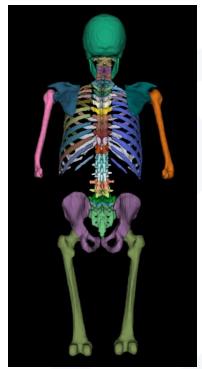
Segmentation method: semantic segmentation

VOI: whole skeleton

Radiomics: current status



- Registered PET/CT images
- Dose-corrected PET
- Osteolytic lesions visible in both imaging modalities (example: in femur)
- Segmentation of skeleton
- Extraction of radiomic features



Multiple Myeloma CLINICS&BIOLOGY

The Genomed4All project: Multiple Myeloma use case WRAP-UP

- Multiple Myeloma is a COMPLEX disease, but still needs a CURE
- □ Strong need to interconnect CLINICS & BIOLOGY to better predict PATIENTS' RISK
- A precise PREDICTION requires HUGE AMOUNT OF (CURATED) DATA to be statistically significative and clinically meaningful
- □ ARTIFICIAL INTELLIGENCE can help in data management, interconnection and prediction
- □ With our partners in the GENOMED4ALL project we aimed at the integration of both CLINICAL, GENOMIC and IMAGING of a large cohort of newly diagnosed MM patients in order to identify PREDICTORS OF EARLY RELAPSE that can refine the definition of high risk patients
- ☐ In the FUTURE, these results will contribute to an IMPROVED DESIGN of clinical trials and a BETTER PATIENTS' MANAGEMENT, towards a more PRECISE MEDICINE

ACKNOWLEDGEMENTS

Multiple Myeloma Research Unit **Prof. Michele Cavo**

MOLFCULAR BIOLOGY LAB

Carolina Terragna Marina Martello **Enrica Borsi** Silvia Armuzzi Ilaria Vigliotta **Barbara Taurisano** Ignazia Pistis Alessia Varacalli Alessia Croce

BIOINFO NERDS

Vincenza Solli Andrea Poletti Gaia Mazzocchetti Viola Mieaxian Vuong

CYTOGENETIC LAB

Nicoletta Testoni Giulia Marzocchi

CLINICAL

RESEARCH UNIT Elena Zamagni Paola Tacchetti Lucia Pantani Katia Mancuso Ilaria Rizzello **Chiara Sartor** Miriam lezza Marco Talarico Michele Puppi Flavia Bigi Ilaria Sacchetti

Simone Masci

Roberta Restuccia

DATA ANALYSIS and MANAGEMENT

Simona Barbato Francesca Trombetta Federica Di Camillo

NUCLEAR MEDICINE Cristina Nanni

Gastone Castellani Claudia Sala Francesco Durazzi Alessandra Merlotti Sara Peluso **Enrico Giampieri** Stefano Polizzi **Martina Tarozzi**

Santiago Zazo Bello Juan Parras Moral Patricia Alonso

Piero Fariselli Cesare Rollo Tiziana Sanavia

GEN@MED4ALL

SANT'ORSOLA

Banca di Bologna

Thanks! Any questions?

GenoMed4All & ERN-EuroBloodNet

Educational Program on AI in Hematology for an expert audience

Follow us!

genomed4all.eu

@genomed4all

/genomed4all

eurobloodnet.eu

@ERNEuroBloodNet

/ERNEuroBloodNet

Acknowledgements

for rare or low prevalence complex diseases

Network
 Hematological
 Diseases (ERN EuroBloodNet)

This project is supported by the European Reference Network on Rare Haematological Diseases (ERN-EuroBloodNet)-Project ID No 101085717. ERN-EuroBloodNet is partly co-funded by the European Union within the framework of the Fourth EU Health Programme.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HaDEA). Neither the European Union nor the granting authority can be held responsible for them.

Geno Med 4All has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017549.